Contact Us
SalesDept@heisener.com 0755-83210559 ext. 805

MAX9020EKA-T

hotMAX9020EKA-T

MAX9020EKA-T

For Reference Only

Part Number MAX9020EKA-T
Manufacturer Maxim Integrated
Description IC COMPARATOR DUAL SOT23-8
Datasheet MAX9020EKA-T Datasheet
Package SOT-23-8
In Stock 1,193 piece(s)
Unit Price Request a Quote
Lead Time Can Ship Immediately
Estimated Delivery Time Jan 25 - Jan 30 (Choose Expedited Shipping)
Request for Quotation

Part Number # MAX9020EKA-T (Linear - Comparators) is manufactured by Maxim Integrated and distributed by Heisener. Being one of the leading electronics distributors, we carry many kinds of electronic components from some of the world’s top class manufacturers. Their quality is guaranteed by its stringent quality control to meet all required standards.

For MAX9020EKA-T specifications/configurations, quotation, lead time, payment terms of further enquiries please have no hesitation to contact us. To process your RFQ, please add MAX9020EKA-T with quantity into BOM. Heisener.com does NOT require any registration to request a quote of MAX9020EKA-T.

MAX9020EKA-T Specifications

ManufacturerMaxim Integrated
CategoryIntegrated Circuits (ICs) - Linear - Comparators
Datasheet MAX9020EKA-TDatasheet
PackageSOT-23-8
SeriesBeyond-the-Rails?
TypeGeneral Purpose
Number of Elements2
Output TypeCMOS, Open-Drain, Rail-to-Rail
Voltage - Supply, Single/Dual (±)1.8 V ~ 5.5 V
Voltage - Input Offset (Max)5mV @ 5V
Current - Input Bias (Max)0.001µA @ 5V
Current - Output (Typ)50mA
Current - Quiescent (Max)2µA
CMRR, PSRR (Typ)80dB PSRR
Propagation Delay (Max)31µs
Hysteresis4mV
Operating Temperature-40°C ~ 85°C
Package / CaseSOT-23-8
Mounting TypeSurface Mount
Supplier Device PackageSOT-23-8

MAX9020EKA-T Datasheet

Page 1

Page 2

Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc. 19-2874; Rev 6; 3/18 Applications ● 2-Cell Battery Monitoring/Management ● Ultra-Low Power Systems ● Mobile Communications ● Notebooks and PDAs ● Threshold Detectors/ Discriminators ● Window Detectors ● Sensing at Ground or Supply Line ● Telemetry and Remote Systems ● Medical Instruments General Description The single MAX9015/MAX9016 and dual MAX9017– MAX9020 nanoPower comparators in space-saving SOT23 packages feature Beyond-the-Rails™ inputs and are guaranteed to operate down to 1.8V. The A-grade packages feature an on-board 1.236V ±1% reference, while the B-grade packages feature a 1.24V ±1.75% reference. An ultra-low supply current of 0.85μA (MAX9019/ MAX9020), 1μA (MAX9015/MAX9016), or 1.2μA (MAX9017/ MAX9018) makes this product family of comparators ideal for all 2-cell battery monitoring/management applications. The unique design of the devices output stage limits supply- current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9015/MAX9017/ MAX9019 have a push-pull output stage that sinks and sources current. Large internal output drivers allow rail- to-rail output swing with loads up to 6mA. The MAX9016/ MAX9018/MAX9020 have an open-drain output stage that makes them suitable for mixed-voltage system design. All devices are available in the ultra-small 8-pin SOT23 package. Refer to the MAX9117–MAX9120 data sheet for similar single comparators with or without reference in a tiny SC70 package. Benefits and Features ● Ultra-Low Total Supply Current • 0.85μA (MAX9019/MAX9020) • 1.0μA (MAX9015A/MAX9016A) • 1.2μA (MAX9017/MAX9018) ● Guaranteed Operation Down to 1.8V ● Precision VOS < 5mV (max) ● Internal 1.236V ±1% Reference (A Grade) ● Input Voltage Range Extends 200mV Beyond-the-Rails ● CMOS Push-Pull Output with ±6mA Drive Capability (MAX9015/MAX9017/MAX9019) ● Open-Drain Output Versions Available (MAX9016/MAX9018/MAX9020) ● Crowbar-Current-Free Switching ● Internal 4mV Hysteresis for Clean Switching ● No Phase Reversal for Overdriven Inputs ● Dual Versions in Space-Saving 8-Pin SOT23 Package ● AEC-Q100 Grade 3 Qualified, Refer to Ordering Information for the List of /V Parts Ordering Information at end of data sheet Functional Diagrams MAX9015 MAX9016 IN+ OUT VCC VEE IN- REF 1.24V 6 7 REF 4 MAX9017 MAX9018 VCC 8 INA+ OUTA VEE REF/INA- REF 1.24V 1 INB+ 4 INB- OUTB 7 3 2 5 6 3 2 5 6 INA+ VCC 8 MAX9019 MAX9020 1 7 OUTA OUTB INA- INB+ INB- VEE 4 3 2 1 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference

Page 3

Supply Voltage (VCC to VEE) ..................................................6V IN+, IN-, INA+, INB+, INA-, INB-, REF/INA-, REF .......................... (VEE - 0.3V) to (VCC + 0.3V) Output Voltage (OUT_) MAX9015A, MAX9017_, MAX9019 ...(VEE - 0.3V) to (VCC + 0.3V) MAX9016A, MAX9018_, MAX9020 ..........(VEE - 0.3V) to +6V Output Current (REF, OUT_, REF/INA-) ..........................±50mA Output Short-Circuit Duration (REF, OUT_, REF/INA-) ........ 10s Continuous Power Dissipation (TA = +70°C) 8-Pin SOT23 (derate 9.1mW/°C above +70°C) ..........727mW Operating Temperature Range ........................... -40°C to +85°C Storage Temperature Range ............................ -65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C (VCC = 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Electrical Characteristics—MAX9015–MAX9018 (Single and Duals with REF) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Supply Voltage Range VCC Inferred from the PSRR test 1.8 5.5 V Supply Current ICC MAX9015A/ MAX9016A VCC = 1.8V, TA = +25°C 1.0 1.5 µA VCC = 5.0V, TA = +25°C 1.1 1.7 VCC = 5.0V, TA = TMIN to TMAX 2.0 MAX9017_/ MAX9018_ VCC = 1.8V, TA = +25°C 1.2 1.9 VCC = 5.0V, TA = +25°C 1.4 2.3 VCC = 5.0V, TA = TMIN to TMAX 2.8 Input Common-Mode Voltage Range (MAX9015A/MAX9016A) VCM Inferred from VOS test VEE - 0.2 VCC + 0.2 V IN+ Voltage Range (MAX9017_/MAX9018_) VIN+ Inferred from the output swing test VEE - 0.2 VCC + 0.2 V Input Offset Voltage VOS VEE - 0.2V < VCM < VCC + 0.2V (Note 2) TA = +25°C 0.15 5 mV TA = TMIN to TMAX 10 Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) 4 mV Input Bias Current (IN+, IN-, INA+, INB+, INB-) IB TA = +25°C ±0.15 ±1 nA TA = TMIN to TMAX ±2 Power-Supply Rejection Ratio PSRR VCC = 1.8V to 5.5V 0.1 1 mV/V Output Voltage Swing High (MAX9015A/MAX9017_) VCC - VOH VCC = 1.8V, ISOURCE = 1mA TA = +25°C 100 200 mV TA = TMIN to TMAX 300 VCC = 5.0V, ISOURCE = 6mA TA = +25°C 250 350 TA = TMIN to TMAX 450 Output Voltage Swing Low (MAX9015A/MAX9016A/ MAX9017_/MAX9018_) VOL VCC = 1.8V, ISINK = 1mA TA = +25°C 105 200 mV TA = TMIN to TMAX 300 VCC = 5.0V, ISINK = 6mA TA = +25°C 285 350 TA = TMIN to TMAX 450 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference www.maximintegrated.com Maxim Integrated │ 2

Page 4

(VCC = 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) Electrical Characteristics—MAX9015–MAX9018 (Single and Duals with REF) (continued) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Output Leakage Current (MAX9016A/MAX9018_) ILEAK VCC = 5.5V, VOUT = 5.5V 0.001 1 µA Output Short-Circuit Current ISC Sourcing, VOUT = VEE (MAX9015A/ MAX9017_ only) VCC = 1.8V 3 mAVCC = 5.0V 35 Sinking, VOUT = VCC VCC = 1.8V 3 VCC = 5.0V 33 High-to-Low Propagation Delay (Note 4) tPD- VCC = 1.8V 7 µs VCC = 5.0V 6 Low-to-High Propagation Delay (Note 4) tPD+ VCC = 1.8V MAX9015A/MAX9017_ 11 µs MAX9016A/MAX9018_, RPULLUP = 100kΩ to VCC 12 VCC = 5.0V MAX9015A/MAX9017_ 28 MAX9016A/MAX9018_, RPULLUP = 100kΩ to VCC 31 Rise Time tRISE CL = 15pF (MAX9015A/MAX9017_) 1.6 µs Fall Time tFALL CL = 15pF 0.2 µs Power-Up Time tON 1.2 ms Reference Voltage (Note 5) VREF MAX901_A TA = +25°C, 1.0% 1.224 1.236 1.248 V TA = TMIN to TMAX, 2.5% 1.205 1.267 MAX901_B TA = +25°C, 1.75% 1.218 1.240 1.262 TA = TMIN to TMAX, 4.5% 1.184 1.296 Reference Voltage Temperature Coefficient TCREF 40 ppm/°C Reference Output Voltage Noise EN BW = 10Hz to 1kHz, CREF = 1nF 29 µVRMSBW = 10Hz to 6kHz, CREF = 1nF 60 Reference Line Regulation ∆VREF/ ∆VCC 1.8V ≤ VCC ≤ 5.5V 0.5 mV/V Reference Load Regulation ∆VREF/ ∆IOUT IOUT = 0 to 100nA 0.03 mV/nA MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference www.maximintegrated.com Maxim Integrated │ 3

Page 5

(VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) Electrical Characteristics—MAX9019/MAX9020 (Duals without REF) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Supply Voltage Range VCC Inferred from the PSRR test 1.8 5.5 V Supply Current ICC MAX9019/ MAX9020 VCC = 1.8V, TA = +25°C 0.85 1.50 µAVCC = 5.0V, TA = +25°C 1.1 1.70 VCC = 5.0V, TA = TMIN to TMAX 2.0 Input Common-Mode Voltage Range VCM Inferred from VOS test VEE - 0.2 VCC + 0.2 V Input Offset Voltage VOS VEE - 0.2V < VCM < VCC + 0.2V (Note 2) TA = +25°C 1 5 mV TA = TMIN to TMAX 10 Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) 4 mV Input Bias Current (INA-, INA+, INB+, INB-) IB TA = +25°C 0.15 1 nA TA = TMIN to TMAX 2 Power-Supply Rejection Ratio PSRR VCC = 1.8V to 5.5V 0.1 1 mV/V Output Voltage Swing High (MAX9019 Only) VCC - VOH VCC = 1.8V, ISOURCE = 1mA TA = +25°C 55 200 mV TA = TMIN to TMAX 300 VCC = 5.0V, ISOURCE = 6mA TA = +25°C 190 350 TA = TMIN to TMAX 450 Output Voltage Swing Low VOL VCC = 1.8V, ISINK = 1mA TA = +25°C 55 200 mV TA = TMIN to TMAX 300 VCC = 5.0V, ISINK = 6mA TA = +25°C 190 350 TA = TMIN to TMAX 450 Output Leakage Current (MAX9020 Only) ILEAK VCC = 5.5V, VOUT = 5.5V 0.001 1 µA Output Short-Circuit Current ISC Sourcing, VOUT = VEE (MAX9019 only) VCC = 1.8V 3 mA VCC = 5.0V 35 Sinking, VOUT = VCC VCC = 1.8V 3 VCC = 5.0V 33 High-to-Low Propagation Delay (Note 4) tPD- VCC = 1.8V 7 µs VCC = 5.0V 6 Low-to-High Propagation Delay (Note 4) tPD+ VCC = 1.8V MAX9019 11 µs MAX9020, RPULLUP = 100kΩ to VCC 12 VCC = 5.0V MAX9019 28 MAX9020, RPULLUP = 100kΩ to VCC 31 MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference www.maximintegrated.com Maxim Integrated │ 4

Page 6

(VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) Note 1: All devices are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design, not production tested. Note 2: VOS is defined as the center of the hysteresis band at the input. Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the band (i.e., VOS) (Figure 1). Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL = 15pF. VOVERDRIVE is defined above and beyond the offset voltage and hysteresis of the comparator input. Note 5: High current traces should not be routed in the vicinity of or below MAX9018. There is a chance of voltage reference being overloaded resulting in drop of output voltage. (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) Electrical Characteristics—MAX9019/MAX9020 (Duals without REF) (continued) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Rise Time tRISE CL = 15pF (MAX9019 only) 1.6 µs Fall Time tFALL CL = 15pF 0.2 µs Power-Up Time tON 1.2 ms Typical Operating Characteristics 0.4 0.6 0.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 MAX9015/MAX9016 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE M AX 90 15 to c0 1 SUPPLY VOLTAGE (V) SU PP LY C UR RE NT (µ A) 1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5 TA = +85°C TA = +25°C TA = -40°C 0.4 0.6 0.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 MAX9019/MAX9020 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE M AX 90 15 to c0 3 SUPPLY VOLTAGE (V) SU PP LY C UR RE NT (µ A) 1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5 TA = +85°C TA = +25°C TA = -40°C 0.8 1.0 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 MAX9017/MAX9018 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE M AX 90 15 to c0 2 SUPPLY VOLTAGE (V) SU PP LY C UR RE NT (µ A) 1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5 TA = +85°C TA = +25°C TA = -40°C 0.4 0.6 0.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 MAX9015/MAX9016 SUPPLY CURRENT vs. TEMPERATURE M AX 90 15 to c0 4 TEMPERATURE (°C) SU PP LY C UR RE NT (µ A) -40 -15 10 35 60 85 VCC = 3V VCC = 1.8V VCC = 5V 0.4 0.6 0.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 MAX9019/MAX9020 SUPPLY CURRENT vs. TEMPERATURE M AX 90 15 to c0 6 TEMPERATURE (°C) SU PP LY C UR RE NT (µ A) -40 -15 10 35 60 85 VCC = 3V VCC = 1.8V VCC = 5V 0.8 1.0 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 MAX9017/MAX9018 SUPPLY CURRENT vs. TEMPERATURE M AX 90 15 to c0 5 TEMPERATURE (°C) SU PP LY C UR RE NT (µ A) -40 -15 10 35 60 85 VCC = 3V VCC = 1.8V VCC = 5V MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference www.maximintegrated.com Maxim Integrated │ 5

Page 7

(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) 50 1 10 100 1k 10k 100k 40 45 30 35 20 25 10 15 0 5 MAX9015/MAX9016 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY M AX 90 15 to c0 7 OUTPUT TRANSITION FREQUENCY (Hz) SU PP LY C UR RE NT (µ A) VCC = 3V VCC = 1.8V VCC = 5V 0 150 200 100 50 300 350 250 500 400 450 550 600 700 650 750 0 2 3 41 5 6 7 98 10 OUTPUT VOLTAGE LOW vs. SINK CURRENT M AX 90 15 to c1 0 SINK CURRENT (mA) V O L ( mV ) VCC = 3V VCC = 1.8V VCC = 5V 0 0.1 0.2 0.5 0.3 0.4 0.6 0 2 3 41 5 6 7 98 10 OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT AND TEMPERATURE M AX 90 15 to c1 3 SOURCE CURRENT (mA) V C C - V OH (V ) TA = +85°C TA = -40°C TA = +25°C 35 1 10 100 1k 10k 100k 30 20 25 15 10 0 5 MAX9017/MAX9018 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY M AX 90 15 to c0 8 OUTPUT TRANSITION FREQUENCY (Hz) SU PP LY C UR RE NT (µ A) VCC = 3V VCC = 1.8V VCC = 5V 0 100 200 400 300 500 600 0 2 3 41 5 6 7 98 10 OUTPUT VOLTAGE LOW vs. SINK CURRENT AND TEMPERATURE M AX 90 15 to c1 1 SINK CURRENT (mA) V O L ( mV ) TA = +85°C TA = -40°C TA = +25°C 0 5 10 30 35 25 15 20 40 -40 -15 10 35 60 85 SHORT-CIRCUIT TO VCC (SINK CURRENT) vs. TEMPERATURE M AX 90 15 to c1 4 TEMPERATURE (°C) SI NK C UR RE NT (m A) VCC = 3V VCC = 1.8V VCC = 5V 50 1 10 100 1k 10k 100k 45 30 35 40 25 20 0 15 5 10 MAX9019/MAX9020 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY M AX 90 15 to c0 9 OUTPUT TRANSITION FREQUENCY (Hz) SU PP LY C UR RE NT (µ A) VCC = 3V VCC = 1.8V VCC = 5V 0 0.1 0.2 0.5 0.3 0.4 0.6 0.7 0 2 3 41 5 6 7 98 10 OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT M AX 90 15 to c1 2 SOURCE CURRENT (mA) V C C - V OH (V ) VCC = 3V VCC = 1.8V VCC = 5V 0 5 10 35 30 45 40 25 15 20 50 -40 -15 10 35 60 85 SHORT-CIRCUIT TO GND (SOURCE CURRENT) vs.TEMPERATURE M AX 90 15 to c1 5 TEMPERATURE (°C) SI NK C UR RE NT (m A) VCC = 3V VCC = 1.8V VCC = 5V MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference Maxim Integrated │ 6www.maximintegrated.com

Page 8

(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) INPUT OFFSET VOLTAGE DISTRIBUTION M AX 90 15 to c1 6 VOS (mV) PE RC EN TA GE O F UN IT S (% ) 1.20.9-1.2 -0.9 -0.6 0 0.3-0.3 0.6 1 2 3 4 5 6 7 8 0 -1.5 1.5 HYSTERESIS VOLTAGE vs. TEMPERATURE M AX 90 15 to c1 9 TEMPERATURE (°C) V H B ( mV ) 603510-15 2.5 3.0 3.5 4.0 4.5 5.0 2.0 -40 85 1.226 1.232 1.229 1.235 1.238 0 8040 120 160 200 REFERENCE VOLTAGE vs. REFERENCE SOURCE CURRENT M AX 90 15 to c2 2 REFERENCE SOURCE CURRENT (nA) RE FE RE NC E VO LT AG E (V ) VCC = 1.8V VCC = 5V VCC = 3V OFFSET VOLTAGE vs. TEMPERATURE M AX 90 15 to c1 7 TEMPERATURE (°C) V O S ( mV ) 603510-15 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 -2.0 -40 85 VCC = 1.8V VCC = 5V 1.234 1.236 1.230 1.232 1.238 1.240 -40 -15 10 35 60 85 REFERENCE VOLTAGE vs. TEMPERATURE M AX 90 15 to c2 0 TEMPERATURE (°C) RE FE RE NC E VO LT AG E (V ) VCC = 3V VCC = 1.8V VCC = 5V A GRADE 1.232 1.238 1.236 1.234 1.244 1.242 1.240 1.246 1.248 0 8040 120 160 200 REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT M AX 90 15 to c2 3 REFERENCE SINK CURRENT (nA) RE FE RE NC E VO LT AG E (V ) VCC = 1.8V VCC = 5V VCC = 3V REFERENCE VOLTAGE DISTRIBUTION M AX 90 15 to c1 8 VREF (V) PE RC EN TA GE O F UN IT S (% ) 1.2381.2361.234 5 10 15 20 25 30 0 1.232 1.240 A GRADE 1.234 1.235 1.239 1.238 1.236 1.237 1.240 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 REFERENCE VOLTAGE vs. SUPPLY VOLTAGE M AX 90 15 to c2 1 SUPPLY VOLTAGE (V) RE FE RE NC E VO LT AG E (V ) 1.225 1.235 1.230 1.245 1.240 1.250 1.255 0 8040 120 160 200 REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT AND TEMPERATURE M AX 90 15 to c2 4 REFERENCE SINK CURRENT (nA) RE FE RE NC E VO LT AG E (V ) VCC = 3V TA = +85°C TA = +25°C TA = -40°C MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference Maxim Integrated │ 7www.maximintegrated.com

Page 9

(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) -1.000 -0.600 0.200 -0.200 0.600 1.000 -0.5 1.50.5 2.5 3.5 4.5 5.5 INPUT BIAS CURRENT vs. INPUT BIAS VOLTAGE M AX 90 15 to c2 5 INPUT BIAS VOLTAGE (IN-) (V) IN PU T BI AS C UR RE NT (I N- ) ( nA ) IN+ = 2.5V 180 0 0.01 0.1 1 10 100 1000 PROPAGATION DELAY (tPD-) vs. CAPACITIVE LOAD 20 40 M AX 90 15 to c2 8 CAPACITIVE LOAD (nF) t PD - (µ s) 80 60 140 160 120 100 VCC = 1.8V VCC = 3V VCC = 5V 0 15 10 5 30 25 20 35 40 0 2010 30 40 50 PROPAGATION DELAY (tPD+) vs. INPUT OVERDRIVE M AX 90 15 to c3 1 INPUT OVERDRIVE (mV) t PD + (µ s) VCC = 5V VCC = 3V VCC = 1.8V 0 6 4 2 12 10 8 14 16 -40 10-15 35 60 85 PROPAGATION DELAY (tPD-) vs. TEMPERATURE M AX 90 15 to c2 6 TEMPERATURE (°C) t PD - (µ s) VCC = 1.8V VCC = 5V VCC = 3V 200 0 0.01 0.1 1 10 100 1000 PROPAGATION DELAY (tPD+) vs. CAPACITIVE LOAD 20 40 60 M AX 90 15 to c2 9 CAPACITIVE LOAD (nF) t PD + (µ s) 100 80 160 180 140 120 VCC = 1.8V VCC = 3V VCC = 5V 4 10k 10M1M100k PROPAGATION DELAY (tPD-) vs. PULLUP RESISTANCE 10 7 6 5 9 8 M AX 90 15 to c3 2 RPULLUP (Ω) t PD - (µ s) VCC = 1.8V VCC = 3V VCC = 5V 0 10 30 20 40 50 -40 10-15 35 60 85 PROPAGATION DELAY (tPD+) vs. TEMPERATURE M AX 90 15 to c2 7 TEMPERATURE (°C) t PD + (µ s) VCC = 5V VCC = 3V VCC = 1.8V 0 10 30 20 40 50 0 20 10 20 30 40 50 PROPAGATION DELAY (tPD-) vs. INPUT OVERDRIVE M AX 90 15 to c3 0 INPUT OVERDRIVE (mV) t PD - (µ s) VCC = 1.8V VCC = 5V VCC = 3V 0 10k 10M1M100k PROPAGATION DELAY (tPD+) vs. PULLUP RESISTANCE 200 80 40 160 120 M AX 90 15 to c3 3 RPULLUP (Ω) t PD + (µ s) VCC = 5V VCC = 3V VCC = 1.8V MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference Maxim Integrated │ 8www.maximintegrated.com

Page 10

(VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) PROPAGATION DELAY (tPD-) (VCC = 5V) MAX9015 toc34 2µs/div VOUT 2V/div VIN+ 50mV/div PROPAGATION DELAY (tPD+) (VCC = 3V) MAX9015 toc37 10µs/div VOUT 2V/div VIN+ 50mV/div 1kHz RESPONSE (VCC = 5V) MAX9015 toc40 200µs/div OUT 2V/div IN+ 50mV/div AC-COUPLED PROPAGATION DELAY (tPD+) (VCC = 5V) MAX9015 toc35 10µs/div VOUT 2V/div VIN+ 50mV/div PROPAGATION DELAY (tPD-) (VCC = 1.8V) MAX9015 toc38 2µs/div VOUT 1V/div VIN+ 50mV/div SLOW POWER-UP/DOWN RESPONSE MAX9015 toc41 40µs/div VOUT 1V/div VCC 1V/div PROPAGATION DELAY (tPD-) (VCC = 3V) MAX9015 toc36 2µs/div VOUT 2V/div VIN+ 50mV/div PROPAGATION DELAY (tPD+) (VCC = 1.8V) MAX9015 toc39 10µs/div VOUT 1V/div VIN+ 50mV/div POWER-UP RESPONSE MAX9015 toc42 20µs/div VREF 1V/div VCC 2V/div VOUT 2V/div MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, nanoPower Comparators With/Without Reference Maxim Integrated │ 9www.maximintegrated.com

MAX9020EKA-T Reviews

Average User Rating
5 / 5 (105)
★ ★ ★ ★ ★
5 ★
94
4 ★
10
3 ★
0
2 ★
0
1 ★
0

Write a Review

Not Rated
Thanks for Your Review!

Arabe*****odson

December 26, 2020

Great dealing with you Guys. Thanks for a very prompt delivery.

Tho***** Raju

December 25, 2020

the parts work as they should. Amazing price perfect all round many thanks

Ros*****n Ben

December 15, 2020

Very pleased with the parts from this company. First class service. Thanks!

Valen*****Noble

December 11, 2020

All OK, fast delivery, good quality. Product works as it should, Nice Seller.

Andi*****yton

December 9, 2020

Fast, Friendly Service. Item as described. Good Communications. Thank You!

Bodh*****roff

December 2, 2020

Great communication. A pleasure to do business with.

MAX9020EKA-T Guarantees

Service Guarantee

Service Guarantees

We guarantee 100% customer satisfaction.

Our experienced sales team and tech support team back our services to satisfy all our customers.

Quality Guarantee

Quality Guarantees

We provide 90 days warranty.

If the items you received were not in perfect quality, we would be responsible for your refund or replacement, but the items must be returned in their original condition.

MAX9020EKA-T Packaging

Verify Products
Customized Labels
Professional Packaging
Sealing
Packing
Insepction

MAX9020EKA-T Related Products

M675-01-BL M675-01-BL IDT, Integrated Device Technology Inc, OSC VCSO 173.3708MHZ LVPECL SMD, 6-SMD, No Lead, Beyond-the-Rails? View
SIT1602BI-22-XXE-38.000000D SIT1602BI-22-XXE-38.000000D SiTIME, -40 TO 85C, 3225, 25PPM, 2.25V-3, -, Beyond-the-Rails? View
7213SPD9V9BE 7213SPD9V9BE C&K, SWITCH TOGGLE SP3T 0.4VA 20V, -, Beyond-the-Rails? View
IMP7P462234 IMP7P462234 APEM Inc., SWITCH PUSHBUTTON SPDT 3A 28V, -, Beyond-the-Rails? View
NFR0300004707JAC00 NFR0300004707JAC00 Vishay BC Components, RES 0.47 OHM 3W 5% AXIAL, Axial, Beyond-the-Rails? View
RNC55H8872FPBSL RNC55H8872FPBSL Vishay Dale, RES 88.7K OHM 1/8W 1% AXIAL, Axial, Beyond-the-Rails? View
RNCF0805BKE165R RNCF0805BKE165R Stackpole Electronics Inc., RES SMD 165 OHM 0.1% 1/8W 0805, 0805 (2012 Metric), Beyond-the-Rails? View
0395338806 0395338806 Molex, LLC, TERM BLOCK PLUG 6POS 5.08MM, -, Beyond-the-Rails? View
1148330000 1148330000 Weidmuller, TERM BLOCK HDR 12POS VERT 5.08MM, -, Beyond-the-Rails? View
D38999/24JE35JD D38999/24JE35JD TE Connectivity Deutsch Connectors, JAM NUT RECEPTACLE, -, Beyond-the-Rails? View
ECM06DRYI-S13 ECM06DRYI-S13 Sullins Connector Solutions, CONN EDGE DUAL FMALE 12POS 0.156, -, Beyond-the-Rails? View
VE-B1H-CW-S VE-B1H-CW-S Vicor Corporation, CONVERTER MOD DC/DC 52V 100W, Full Brick, Beyond-the-Rails? View
Payment Methods
Delivery Services

Quick Inquiry

MAX9020EKA-T

Certified Quality

Heisener's commitment to quality has shaped our processes for sourcing, testing, shipping, and every step in between. This foundation underlies each component we sell.

ISO9001:2015, ICAS, IAF, UKAS

View the Certificates

Do you have any question about MAX9020EKA-T?

0755-83210559 ext. 805 SalesDept@heisener.com heisener007 3008774228 Send Message

Featured Products

IRFZ44NPBF

MOSFET N-CH 55V 49A TO-220AB

TL1014BF160QG

SWITCH TACTILE SPST-NO 0.05A 12V

LTST-C19HE1WT

LED RGB DIFFUSED 0606 SMD

ADUM1401ARWZ

DGTL ISO 2.5KV GEN PURP 16SOIC

ESDR0502NMUTBG

TVS DIODE 5.5VWM 6UDFN

MC68HC908JB8ADW

IC MCU 8BIT 8KB FLASH 28SOIC

SHT21

SENSOR HUMID/TEMP 3V I2C 2% SMD

2-84952-0

CONN FPC BOTTOM 20POS 1.00MM R/A

XC6VSX475T-1FF1759I

IC FPGA 840 I/O 1759FCBGA

MMPF0100F0AEP

IC PWR MGMT I.MX6 56QFN

View More >>

MAX9020EKA-T Tags

  • MAX9020EKA-T
  • MAX9020EKA-T PDF
  • MAX9020EKA-T datasheet
  • MAX9020EKA-T specification
  • MAX9020EKA-T image
  • Maxim Integrated
  • Maxim Integrated MAX9020EKA-T
  • buy MAX9020EKA-T
  • MAX9020EKA-T price
  • MAX9020EKA-T distributor
  • MAX9020EKA-T supplier
  • MAX9020EKA-T wholesales

MAX9020EKA-T is Available in